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Introduction

A major difficulty associated with aircraft control is that the dynamic

characteristics are highly dependent on variable parameters, such as the

altitude and the Mach number. Recent years have seen considerable effort

towards the design of adaptive control systems, taking the dynamic dependence

on varying flight parameters into account. Yet, the design of simple controllers

and filters, minimizing the necessary airborn computation and data storage

capabilities, on the one hand, and the dependence on accurate air data, on the

other, remains of major interest. Fixed gain controllers and filters are commonly

used as back-up control systems for advanced high performance aircraft.

In this paper a method for designing fixed-gain controllers and estimators

for systems with large parameter variations or uncertainties is described. The

approach is based on minmax criteria defined on Kuilback's information measure [I]

and previously used for solving model simplification problems ([2), [3]). (We

note here that other minmax design criteria for deterministic systems have been

proposed, e.g. [4]). The design objective is that the maximum possible difference

between the optimal system at the actual operating point (i.e. the optimal adaptive

system) and the selected fixed-gain system be minimal. Finite time and regulator

design criteria are defined. The proposed technique is used to design a longitudinal

back-up control system for a given high performance aircraft. Simulptod aircrift

responses and a pilot rating chart indicate good performance qualities of the resulting

fixed gain control system for the entire flight regime.

* , --,, , ' __5_ _ " "  ..'... .,..[
4"



-2-

2. Design Criteria

VT

VA. General

In the design problems under consideration we have a stochastic system

M(p,s) depending on a parameter p, whose values may vary over a set P and a

parameter s, whose value is to be selected from a set S in the design. Employing

some optimal design criterion, to each parameter value p there corresponds an

0
optimal value s(p) of s. It is desired, however, to find a single value s

that will be optimal in some sense for the entire parameter set P. The cost

(or damage) of the resulting design at a given parameter value p is defined as

the distance, in some measure, between M(p,s) and M(p,s(p)). Employing Kullback's

information ;is a distance measure ([1]-[3]) the maximal cost for a given choice of s

max E S(P) log j _(Y

pVP f f5 Y)
p

s(p) s
where Y is a set of observationsf f(Y) and f (Y) are the probability densities

of Y corresponding to M(p,s(p)) and M(p,s), respectively and E S(P)' denotes
p

expectation with respect to M(p,s(p)). The design objective is to minimize the

maximal cost, i.e.

min max E S()log 2....

SES PEP P (Y)
P p

/i
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B. Controller Design for a Linear System in Finite Time

Consider a dynamical system in the form

Xn+l = Fn (p,s)x + B (p,s)u + G (p)w
n n n n n n

(2.1)

Yn H (P)x + v
n n n

where x is Gaussian with mean m (p) and covariance P (p) U is an external

(non-feedback) deterministic input, w and v are zero-mean Gaussian white noisen n

sequence6 with

coy (w) Q (p)

co ('j ) --K (p)
n n

p is a variable parameter vector taking values in a set P and s is a vector of

controller gains taking values in a set S. Any linear state feedback is accounted

for in the matrix F (p,s). We denote the above system by M(p,s).
n

Employing some optimal control criterionto each parameter value p there

corresponds an optimal gain value s(p) and the corresponding system M(p,s(p)).
0

It is desired, however, to find a constant gain s that will be optimal in some sense

for the entire parameter set P. As in the case of optimal controller design at a
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given parameter value, the design may be aimed at optimizing the system's response

to some input sequence or tc an initial condition in finite time. Let us denote

s (p) N

2 s (p ) o P

I N (p,s) N E~ log N
N p f (Y)

p

N
where Y (y,,...,yN) "  For the Gaussian case under consideration 

we have

N 
( 

(2.(P 
,s)l -

[log n+ tr s (p,s)-k] (2.2)

(. (p,s(p)); 
n n

n

ji.ere k is the observations' dimension and

T,

TI s E5 'Iv n-vYn~ (p,s)]~y n- y n (p,s)] IP^

S(P), 
T

v -v (p,s(p))][v -y 
(p-"s(p))l

p n nin-l n nin-I

n (p,s) EP)Yn-Y nln (P,s)[y n-vnn- 1 (p's)]I

nn-1

v (p,s) Ei'{v !Ynzn-I p "n

ni (P,s(p)) E EP)ynlY n-1}
I p n

- ------ ---
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For the given system 7 (p,s) is obtained from

T
(p,s) = H (p)1J (p,s)H (p) + R (p)

n n n n n

where tn (p,s) is obtained from the Ricatti equation

,n+l (p,s) = Fri (p,s),,n (ps)FT(ps) + G (p)Qn(p)G (p)

nl n n n n

with

T -1
K (p,s) = (ps)H (p)- (ps)

n n n

(Z (p,s(p)) is obtained in a similar manner, replacing s by s(p)). 7 (ps) is
n n

obtained from

n (ps) H n (P)H'n(ps) + X (PS)n(Ps)]Hn(p) + R(p) (2.3)

where (p,s) is obtained from

Pn (p,s) = n (ps)n (ps)T (p,s)L + j (p,S)Qn(p)GnT(ps) (2.4)



initialized at

it (p) 01

(p s)
0o

0 0

and X (p,s) is obtained from

+(p,) = F- (ps)X (ps) + B (P,S)u (2.5)

ini t ,i ji, ed It

Mo (p)

0

m()

We have used the notation

F n(p,s(p)) 0

n (p,s)

F (p,s)F (p,s)H(p) 1 (p,s)[I-K (p,s)H (p)] -r

a~~ ~ .... n n.... I I



n (P)

G ( p s)

n K 0  F (p,s)K (p,s)

n n

SP) p)

H (p) = (H (p) -H np)]n n 0

B (P,s(P))
n

B n (ps)

The fixed-gain controller is found from

S = arg fmtn max I (p,s),

,k:S pCP

/
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has all its' esigenvalues inside the unit circle). Then the cost function.

I N(p,s) has a finite limit value, given by

I(p,s) - log + tr '(p,srp,s)-k (2.6)I E(p,sip) I

where Z(p,s), E(p,s(p)) and r(p,s) are the limit values of E (p,s), r (p,s(p)) andh n

r n(p,), respectively.

Proof

It is well known that when the system is controllable by the input noise

and observable, the state estimation error covariance has a non-singular limit

value. It follows that the output estimation error covariance E (ps) has an

non-singular limit value E(p,s) if H(p) has independent rows, which is the normal

case. It is also well known that an equation of the type (2.4) (a Lyapunov equation)

has a limit solution for wn(p,s) if F(p,s) has all its' eigenvalues inside the unit

circle. But due to the structure of F(p,s), its' eigenvalues are the eigenvalues

of F(p,s(p)) together with the eigenvalues of F(p,s)(-X(p,s)H(p)J. Since P(p) I*

stabilizing, F(p,s(p)) has all its' eigenvalues inside the unit circle. Since the

system (F(p,s),G(p),H(p) is controllable and observable, the matrix F(p,s)[I-K(p,s)H(p)]

7



has all its eigenvalues inside the unit circle (see, e.g. [5] p. 144). It follows

that all the eLgenvalues of F(p,s) are inside the unit circle and, consequently,

(2.!,) has a limit solution for 'n . In addition since the system (2.5) is stable,

X (p,s) has a finite limit value. It follows that F (p,s) in (2.3) has a finite
n n

limit value, r(p,s). We have thus shown that Z (p,s) and Fn (p,s) have limitnn

value: :(p,s) and F(p,s). The assertion readily follows from (2.2).

It should be noted that the controllability and observability conditions are

structural requirements which are "generically" independent of the specific values

of the parameter p and s. The condition that s(p) is stabilizing is normally

satisfied in pointwise optimal design. For instance, consider the system

"'n+1 = F(p)x +D(p)z +B(p)u + G(p)w n

(2.7)

V = H(p)x + vn
n

where z is a linear state feedback process, i.e.
n

z = sx (2.8)
n n

Then it is well known that by an appropriate choice of the gain matrix s, the

eigenvalues of the matrix

F(s,p) = F(p) - D(p)s (2.9)

/
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can be placed inside the unit circle provided that the pair (F(p), D(p)) is

stabilizable. One such choice of s is obtained by the linear quadratic

cri terion

min IxTLx + x TMz + z n ] (2.10)

z n1
n

where M and N are positive definite matrices and L is a positive semi definite

matrix such that for C TC = L the pair (F(p),C) is observable. This criterion

gives z in the form (2.8) with

s s(p) = [D(p) T(p)D(p) + N]- D(p)¢(p)F(p)+M]

where :(p) is obtained from the algebraic RicatL; equation

(p) = KI(p) + L - K2 (p)K 3 (p)KT(p)

where

K (p) = F T(p)4(p)F(p)1

K (p) = F(p)¢(p)D(p)+M
2

K3 (p) = D(p)¢(p)D(p)+N

r 7
I,
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Example 1

Consider the system (2.7) with

F(p) 1 D(p) , G(p) = I, H(p) [1 0]

and state feedback

Zn = - s ]x

so that

F(p,s) 

=

It can be seen that the system (F(p,s),G(p),H(p)) is controllable and observable

and the pair (F(p), D(p)) is stabilizable, independently of the values of p1 ,P2 ,sls 2 .

The conditions of theorem I are thus satisfied and the cost function J(p,s) has a

finite limit value for all p and s. On the other hand, taking F(p,s) as above but

r /
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with

ill

D(p) , G(p) = H(p) - [0 11

0 0

it can be seen that the system (F(p,s),G(p),H(p)) is controllable and observable

everv'herc" but on the line pi = SI and the pair (F(p,s),D(p)) is controllable

(hence, stabilizable) everywhere but at p1 - 0. Since these points in the P S

hvptrpl|ine produce indefinite values for the cost function J(ps), they may simply

be avoided in the search procedure.

It should he emphasized that while the conditions of theorem I ensure that the

fixed giin design criterion is well defined, they do not guarantee that the resulting

fixed gain controller will be stabilizing at all points in the given parameter set P.

In fi u-t, overall stability may not be achievable -7 a fixed gain controller for given

parameter sets. To ensure stability the parameter set must be restricted in such a

way that the eigenvalues of F(p,s) are mapped into the unit circle for all values of

p and s. This problem has been recently considered in [6].

C. Filter Design.

Once a fixed gain controller has been selected, the system is given by (2.1)
0

with s=s . To each parameter p there corresp ,nds a linear stochastic model and

an optimal estimator (Kalman filter) based on this model. It is now desired to

find an estimator, independent of p(i.e., non-adaptive), that will be optimal in

- - -----
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some ;ense for the entire parameter set P. Restricting the search to the

set of Kalman filters defined on P, the minmax information criterion defined in

Section A implies that the desired estimator is the Kalman filter corresponding

to a parameter point teP, which is found from

f (Y)
min max E log -i-___

t ip pEP P f t(Y)

where f (Y), f (Y) and E are the probability densities and the expectation
p t p

associated with the corresponding parameters. (note that if t is identified

as the filter design parameter, then, using the notation of section A, we have

ft(P) = fP = fp, ft = t = f and Et(p) . EP = E ).
p p p t t p p p

For an observation sequence YN = (Yl9 .... yN) let us denote

f(N)

I (p,t) = E log P
N N P f (yN)

t

then the filter design criterion in finite time may be written as

min max IN (p,t)
ttP pEP

The calculation of IN(P,t) is similar to that of IN(PS) in the controller design

problem, replacing in the corresponding equations F(p,s(p)), F(p,s), K(p,s),B(p,s(p))

i -
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and B(p,s(p)) by F(t,s0 ), F(p,s°), K(p,s°), B(t,s ° ) and B(p,s ° ) respectively,

0
where s is the selected controller gain vector, and replacing H(p) by [H(t) - l1(r)].

As in the case of controller design, steady-state estimator design offers a

computational advantage over finite time design. We have the following result.

Theorem 2

Suppose that for each pcP the system (F(p,s°),G(p), H(p)) is stable, controllable

and cbservable. Then the cost function I (p,t) has a finite limit value
N

Proof: Substituting the corresponding matrices, the proof is identical to that of

Theorem 1.

It ;hould be noted that an intermediate result of the proof is that under the

c:ondition of the theorem the state estimation error

T
(t,p) = E Ix -x (p)]x -x (p1 1

n t n nl n l nXn-

has a finite limit value for any t and p. This means that although the non-adaptive

filter is not optimal in tho least-squares sense at any point but t, its' mean-square

error has a finite limit value. The fixed-gain steady state estimator is obtained

e[..-



f rom

min max I(p,t)

where I(p,t) is the limit value of I (p,t).

IFn
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3. fixed Gain Controller and Filter Design for Aircraft

The proposed design procedure has been applied to the problem of finding

fixed gain values for the longitudinal control system of a given fighter aircraft

(the YF-16 CCV data has been used in the design). The linearized short period

equations are given by (e.g. 17)).

q a 1 1(P) 12 (p) a1 2 (p) q ] I W 0

:1(p 22(p) a + Ld2(P) 6e + 0

o a 33(p) 1 Lw _j _L .L3 (p)

where q is the pitch rate, a is the angle of attack, w is a wind gust disturbance,

& is the elevator angle (no actuator dynamics are introduced here, for simplicity)
e

and is a zero mean unity covariance white noise component of the wind disturbance.

The coefficients a (p), d (p) and (p) are functions of the flight condition

parameters, p - (J,M), where h is the altitude and M is the Mach number. Pitch

rate and normal acceleration measurements are used for feedback purposes. The

measurement equation is

q 0 0 q 0

y a e

a K a22 (Ui 0 w d2 (P)Uonz L 2 0 -4



where a is the normal acceleration, U is the forward velocity and v is a zero mean

white noise process. Typical sensor accuracy and wind disturbance data can be found

in the literature (e.g. [8]). The open loop dynamical system was found to be

unstable for most of the given flight conditions.

For digital control purposes the equations have been disretized at 0.02 seconds

sampling intervals. The resulting system has the form

Xn+ 1  F(p)x + D(p)6 + G(pnln e n

n

v =H(p)xn + vn n

As a first step in the design procedure an optimal controller is designed for

each of the flight conditions. While any desired criterion could be used at this

stage, we have chosen for illustration purposes the linear quadratic criterion [81

2
2 a 2

minn
rai .fi----- - + 2-

Zn qMx anz 6emax
max

It has been found that for all given p values the pair (F(p),D(p) is stabilizable

and the pair (F(p),G) is observable where

U
--- -- 0 0 1100g 0

Ua 2 1(P)

0 0 0

/
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Fl igilt Dyn.

Cond. a It. Mach Press. 2 s
No. (ft) No. (Ib/ft ) q

1 S.L. 0.6 363.55 -1.377 -2.048 - ,3242

2 15,000 0.6 205.07 -1.121 -1.101 -0.0413

3 30,000 0.6 107.85 -0.9603 -0.608 -0.0177

4 S.L. 0.8 646.32 -1.3916 -3.395 -0.0077

5 15,000 0.8 364.57 -1 .197 -1.9-Y3 -0.0072

b 30,000 0.8 191.73 -1.079 -1.115 -0.002.'

S.L. 0.9 818.00 -1.3175 -4. 307 -0.00301

8 15,000 0.9 461.41 -L.1903 -2.575 0.0051

9 1(0,000 0.9 242.66 -1.1057 -I .525 0.0028

S.1.. 0.95 911.41 -1.§'3 -5.127 0.0261

i1 ]:),000 0.95 514.10 -1.1086 -2.935 0.0456

12 30,000 0.95 270.37 -1 .0575 -1 .687 0.0225

13 S.L. 1.2 1,454.22 -1 .6637 -6.782 0 1931

14 15,000 1.2 820.28 -1.4332 -4.044 0 .2061

15 30,000 1.2 431.39 -1.134- -2.344 0.1092

16 30,000 1.7 865.77 -1.7801 -2.698 0.1281

17 50,000 1.7 335.37 -1.6817 -1.383 0.0554

Tab1v 1. Optimal (Linear Quadrat ic) Feei i. (, ins for (i vtn F1 i .ht Conditin.;.



-T

-20-

so that the resulting controller (regulator)

z = -s(p)x
n n

is stabilizing. In addition, the system (F(p,s) , G(p), H-(p)) i:; c ontr)1 1ll rin(U

observable for any s and p so that the conditions of Theorems ;nd " t,.i >- f ieed

and the fixed-gain design criteria are well defined.

In searching for a fixed-gain controller we have reqtricted our , v,-!;s LO the

finite set of optimal gain values s(p) for the 17 given flight conditi,,n :. Theso

are given in Table 1. The fixed gain controller design criterion now be or,,-

min max {T(j,i) ; i,j 1,..., 17}

The resulting fixed gain controller gains are

s = -1 .4532
q

s = -4.0437

s = 0.2061
W
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(these are the optimal controller gains corresponding to flight condition 14).

It remains to find a flight condition-independent state estimator. Substituting

the fixed controller gains into the dynamical models for each of the flight

conditions, we get 17 "closed-loop" models. Employing the filter design

criterion presented in section 2.2, and restricting the search to the set of 17

optimal Kalman filters, the filter corresponding to flight condition 3 is found

to be the overall (non-adaptive) optimal filter. The resultina control system is

given schematically in figure 3.1

c:omlmand e q, a
- Aircraft nz

- - dynamics

Controller , Kalman -

(14) filter (3)

Figure 3.1 Resulting Fixed-Gain Control S'.stem

for Aircraft

Although we did not specifically introduce performance requirements into

the design procedure, it is interesting to examine the performance of the

resulting control system at different flight conditions. Loosely speaking, it

might be expected that with a fixed gain controller the aircraft responses would be

faster at high dynamic pressures than at low pressures. (The dynamic pressure is

P U 2 where o is the atmospheric air density and U is the forward velocity.)Pd 2 0 o

For high performance military aircraft it is necessary that even at low dynamic

pressures the control system maintains sufficient maneouxvring power (i.e. fast

response) which is acceptable to the pilot.

I,I



The aircraft response in the pitch rate and in the normal accelerat ion

to a 40 disturbance ("initial condition") in the angle of attac' is sho%,M il

Figure 3.2. A linearized aircraft model has been used in the simulation.

The flight conditions considered, ordered by increasing dynamic pressure, are

3, 1, 5 and L. It is seen that, as expected, the response sneed ienerallv

increases with the dvnamic pressure (Note, however that this dependence is not

simple. For instance, the response is significantly faster at flight condition 3

than at flight condition I, although the corresponding dynamic pressures are

nearly the same.) Note that an acceptable settling time of 2-1 sec. is obtained

for the lower dynamic pressure range (e.g. flight condition- I anil ') ,.hile for the

higher pressure range it is much shorter (1 sec).

/
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-0.11 -0.02 --

-1.9 -0.44

-3.81 -1 i I I0 1.0 2.0 3.0 4.0 0 1.0 2.0 3.0 4.0

-0.37 -0.52-

- , /I -1.6

-7r . . ,. .

0 1.0 2.0 3.0 4.0 2. 1.0 2.0 3.0 40

-0.78 -- / -0.47
/

-2.7 -1.7

- 4.6 . . _.0_.0-2._8_ _,0 1.0 2.0 3.0 4.0

-1.2- -0.89-

-3.7 -- 2.7

6.2 -4.4 I
0 1.0 2.0 3.0 4.0 0 1.0 2.0 3.0 4.0

Figure 3.2. Pitch rate (left) and normal acceleration (right) reslonses of resulttnp
fixed-gain control system at flight conditions 3 (top), I, 5, 11 (bottom).
The dynamic pressure is lowest at F.c.3 and highest at f.(. 11.

/ - .- • . l , -lt , .. , ,,.' r, --. "... .. . , -.
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Next, the fixed gain design is evaluated using a pilots' opinion -hart

proposed in [7]. The damping ratio and the natural frequency of the closed-

loop system at each of the flight ,-nditions have been calculated and placed on

the chart as shown in Figure 3. It is seen that the system's performance at most

of the flight conditions is rated as satisfactory or acceptable. 
(The tendency

towards the fast response range and away from the slow response range is also

desirable for high performance fighter aircraft). This is particularly remarkable

in view of the large variability of the flight conditions and the corresponding

aircraft dynamics, and in view of the fact that performance or handling qualities

have not been specifically considered in the design.

6.0 E E xX

5.0 - -
A - Satisfactory

C B - Acceptable

4.0 X C - Poor

F D - Very slow response, large

control motion to manoeuvre,
.O - Adifficult to trim

i\ --- '/ - Initial response fast.

2.0 w-' oversensitive, light stick2.0 E-Iiilrsos at

forces

1.0 x D  F - Sluggish, lirge stilc' otl " .

and forces

0 , _ri - Slow initially, then

0.1 0.5 1.0 2.0 3.04D oscillatory, tendency to

l:,nm lns Ratio overcontrol

Figure 3.3 Performance evaluation of proposed

fixed-gain design at given flight

conditions by pilot rating contours.
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Concluding Remarks

A method for designing fixed-gain controllers and filters for stochastic

systems with large parameter variation has been presented with particular attention

to the control problem of high performance aircraft. The resulting design has

shown good performance qualities, although performance specifications have not

been introduced directly into the design. This may be done by first designing each

of the pointwise optimal controllers (at each of the flight conditions) so as to

meet the specifications, and then imposing the specifications as constraints on the

minmax search procedure. In this paper we have found a fixed-gain control system

for the entire flight regime. However, since the fixed-gain controller would

normally he used as a back-up system in emergency situations, a small subset of the

flight c nditions corresponding to those situation. mav be considered in the design,

so as tr, meet tighter performance requirements.
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